View Single Post
Old 03-15-2010, 04:32 PM   #54 (permalink)
RCZ
A True Z Fanatic
 
RCZ's Avatar
 
Join Date: Nov 2008
Location: Miami
Posts: 6,403
Drives: '09 370Z
Rep Power: 1119
RCZ has a reputation beyond reputeRCZ has a reputation beyond reputeRCZ has a reputation beyond reputeRCZ has a reputation beyond reputeRCZ has a reputation beyond reputeRCZ has a reputation beyond reputeRCZ has a reputation beyond reputeRCZ has a reputation beyond reputeRCZ has a reputation beyond reputeRCZ has a reputation beyond reputeRCZ has a reputation beyond repute
Send a message via AIM to RCZ
Default

Quote:
Originally Posted by spearfish25 View Post
Can anyone confirm that immediately releasing and then reapplying the brakes resolves the issue? I think this was briefly suggested a few pages back. Could be a life saver if it's true and the knowledge disseminated.
I pumped immediately since I'm used to it from karts, but it didnt change anything.

EDIT: More info

Quote:
"The symptoms being described are a result of the Electronic Brake Distribution (EBD) system operating. This system is also referred to as Dynamic Rear Proportioning (DRP) and is, as the name implies an electronic system which, through the ABS control valve block restricts the line pressure to the rear brakes automatically to a pre-programmed algorithm. You can consider it as an electronically controlled proportioning valve which measures parameters like the rate of deceleration and rate of pedal application and uses this data to anticipate a rear wheel lock-up and then reduces the braking effort at the rear wheels as necessary. If the ABS system is left to do this, it can only react to a wheel as it starts to lock and therefore the car can already start to spin before the ABS can start to work. In extreme circumstances, if the driver brakes very suddenly the EBD system can lock off the pressure to the rear wheels completely; what pressure was at the rear brakes as the EBD system engaged remains there and the rear brakes are still working as a result, but further increases in pedal effort will not increase the braking at the rear of the car because the pressure to the rear brakes cannot increase. When this happens the brake pedal goes hard, as it is now pushing against the front callipers and a closed valve only, instead of against the front and rear callipers. The rear callipers are single piston and therefore quite flexible, so they are a major factor in making the brake pedal feel 'soft'. When the valve closes, the brake pedal pressure no longer flexes the rear callipers, hence the increase in pedal hardness. The front brakes are still working just as well as before the valve closed and will give more braking if the pedal effort is increased, while with the rear brakes working as hard as they can the braking is NOT affected. The problem is the driver feels like braking is reduced (even though it is not) because of the change in pedal feel. If the driver continues to push hard on the pedal, the car will continue to slow as fast as it possibly can in the circumstances. If he increases the pedal effort the front braking effort will increase and the rear effort will remain where it was. If he was to back off the pedal for a fraction of a second, the valve will reopen and the rear brakes will operate as normal again, with the pedal feel going back to normal.

In the case of releasing and re-engaging the pedal the car should not be able to slow any faster than it was with the system engaged unless either 1: the driver triggered the system in the first place by stamping on the pedal too fast or 2: the system triggered because a rear wheel was unloaded when the brakes were applied and would have locked up but is now fully loaded once again and able to sustain a greater braking torque. If the rate of deceleration does improve when the pedal is reapplied then it is telling the driver that he is over braking either in terms of the ultimate ability of the brakes (cause 1 above) or the track condition (cause 2 above) and needs to adjust his driving style to suit. If the system were not fitted or disabled and he continued to drive that way he would be in danger of spinning when applying the brakes.

The suggestion that the system is running out of vacuum is just plain wrong. The system carries an internal reservoir of vacuum sufficient for three full brake applications. As with every servo system ever fitted to a car there is a one way valve which prevents the vacuum being lost when the car is on boost. The only way this reserve can be depleted is if the driver is maintaining boost while applying full brakes, i.e.: left foot braking very badly. In this instance I would argue that depleting the vacuum is probably a good thing as it should provide him with a warning that he is doing something awful to the car and it may reduce the speed of impact when he finally hits something as the brakes fade to nothing!! In normal use the throttle is closed when the brakes are applied, there is therefore no boost and the vacuum is automatically replenished as it is used.

Last edited by RCZ; 03-15-2010 at 04:51 PM.
RCZ is offline   Reply With Quote